Indian Statistical Institute, Bangalore

B. Math.(Hons.) III Year, Second Semester Semestral Examination Combinatorics and Graph Theory May 3, 2010 Instructor: N.S.N.Sastry

Time: 3 hours

Maximum Marks 100

Answer all questions. Your answers should be clear, complete and to the point.

- 1. Show that there is a unique strongly regular graph with parameters $k = 3, \lambda = 0$ and $\mu = 1$. [8]
- 2. a) Define precisely a projective subplane of a projective plane.
 b) If a projective plane of order n contains a projective subplane of order m, show that either n = m² or n > m² + m. [3+7]
- 3. Given a t- (v, k, λ) design (X, \mathbb{B}) , show that the number of blocks meeting a m- subset S of points, $1 \le m \le t$, in exactly n points, $1 \le n \le m$, depends only on m and n and not on the choice of S. [10]
- 4. Define the dual of a t- design. Show that a t- design, $t \ge 2$ isomorphic to its dual exists only if t = 2. Give an example of a 2- design which is isomorphic to its dual. [12]
- 5. Let A and B be subspaces of dimension k in \mathbb{F}_q^n , q a prime power. Determine the number of subspaces of \mathbb{F}_q^n of dimension l which contain A but not B. Here, $1 \leq 2 \ k < l \leq [\frac{n}{2}]$. [10]
- 6. a) Show that the set of zeroes of $XY = Z^2$ in the projective 3- space over \mathbb{F}_q is a (q+1)- arc.

b) If q is even, determine the nucleus of the (q+1)-arc defined in (a). [12+8]

- 7. Define an affine plane of order n. Show that a projective plane of order n exists if, and only if, an affine plane of order n exists. [4+6+6]
- 8. a) Given any function f from a finite field \mathbb{F}_q to itself, show that there is a unique polynomial $p(X) \in \mathbb{F}_q[X]$ of degree at most q such that f(a) = p(a) for all $a \in \mathbb{F}_q$. [12]

b) Show that $f(X) = \sum_{i \ge 0}^{n} a_i X^{p^i} \in \mathbb{F}_q[X], n \ge 1$, is a permutation polynomial if, and only if, zero is the only root of f(X) in \mathbb{F}_q . [6]